Superposition in homogeneous and vector valued Sobolev spaces
نویسندگان
چکیده
منابع مشابه
Traces of vector-valued Sobolev Spaces
The aim of the paper is to characterize the trace space of vector-valued Sobolev spaces W p (R , E) , where E is an arbitrary Banach space. In particular, we do not assume that the underlying Banach space E has the UMD property. Vector-valued Sobolev and Besov spaces are widely used in abstract evolution equations, cf. e.g. Amann [1, 2, 4], Veraar and Weis [57] or Denk, Hieber, Prüss, Saal, and...
متن کاملSuperposition with subunitary powers in Sobolev spaces
Let 0 < a < 1 and set Φ(t) = |t|, ∀ t ∈ R. Let 1 < p < ∞ and n ≥ 1. We prove that the superposition operator u 7→ Φ(u) maps the Sobolev space W (R) into the fractional Sobolev space W (R). We also investigate the case of more general nonlinearities. Résumé. Superposition avec des puissances sousunitaires dans les espaces de Sobolev. Pour 0 < a < 1, soit Φ(t) = |t|, ∀ t ∈ R. Soient 1 < p < ∞ et ...
متن کاملOperator Valued Series and Vector Valued Multiplier Spaces
Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous linear operators from $X$ into $Y$. If ${T_{j}}$ is a sequence in $L(X,Y)$, the (bounded) multiplier space for the series $sum T_{j}$ is defined to be [ M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}% T_{j}x_{j}text{ }converges} ] and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...
متن کاملVector-valued Inequalities on Herz Spaces and Characterizations of Herz–sobolev Spaces with Variable Exponent
The origin of Herz spaces is the study of characterization of functions and multipliers on the classical Hardy spaces ([1, 8]). By virtue of many authors’ works Herz spaces have became one of the remarkable classes of function spaces in harmonic analysis now. One of the important problems on the spaces is boundedness of sublinear operators satisfying proper conditions. Hernández, Li, Lu and Yan...
متن کاملThe Poisson equation in homogeneous Sobolev spaces
We consider Poisson’s equation in an n-dimensional exterior domain G (n≥ 2) with a sufficiently smooth boundary. We prove that for external forces and boundary values given in certain Lq(G)-spaces there exists a solution in the homogeneous Sobolev space S2,q(G), containing functions being local in Lq(G) and having second-order derivatives in Lq(G). Concerning the uniqueness of this solution we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2010
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-2010-05150-5